How Smooth Is Attention?

Valérie Castin!, Pierre Ablin? and Gabriel Peyré!

LEcole Normale Supérieure PSL, Paris
2Apple

ENS de Lyon, 21 January 2025

1/26



Transformers process tuples

Transformers are state-of-the-art in several fields: NLP, computer vision, multimodal
learning, generative modeling...
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Transformers process tuples

Transformers are state-of-the-art in several fields: NLP, computer vision, multimodal

learning, generative modeling...

® |mportant feature: data represented as tuples
(x1,...,xn) € (R?)" of tokens

- ™

This is how GPT-3 tokenizes this sentence. =] -
Tokenization of text , RN

Token|zat|on of images

~

HW'

® Positional encoding encodes the order of tokens

Allows to learn local dependencies!

A
Positional > E?

encoding
(771 s T )

Input
Embedding

Inputs
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Attention is the core component of Transformers

Architecture of Transformers:

e Attention layers: U,(RY)" — U,(R9)" learn
dependencies between tokens

LayerNorm

e Multilayer perceptrons: RY — R (applied token-wise)

® | ayer normalization: project each token on an ellipsis

Multihead
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Architecture of Transformers:

® Attention layers: U,(R)" — U,(R?)" learn
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 Multilayer perceptrons: RY — RY (applied token-wise)

® | ayer normalization: project each token on an ellipsis

LayerNorm

Multihead
Self-Attention

— How much can the output change when slightly perturbing
ositional (g, vees X)) .
B ——> the input?
(my, ..., m,)

ot ) o ) ® controls robustness and expressive power
Embedding Leeeta

)

® parameters are fixed

® we analyze only one attention layer

Inputs
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The self-attention map

e Parameters: Q, K € Rk*9 and V € RIxd
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The self-attention map

e Parameters: Q, K € Rk*9 and V € RIxd
® Attention of X = (x1,...,x,) € (RY)" w.rt. z€ R%:

Mx(z) = ij Vx; with p; =exp((Qz, Kxj))/ Zexp((Qz, Kxg))

j=1 =1
¢ Self-attention of X = (xy,...,Xp):
f:Xe (RN — (Tx(x1),....Tx(xn)) € (RY)" X "X
e Depends only on A== K'Q xz.

Multi-head attention: linear combination ZZI:l W (h) £(h)
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The self-attention map

Transformation of X3 Transformation of X
1 1
. o X e X
0,0 0,0
0 - .(+) * f(X)s | 0 &':.) x f(X)
—1 1 —1 1
i f(X o i xa®
-2 X3 (x Js -2 -
73 T T T 73 T T T
—1 0 1 2 —1 0 1 2

F(X)i=> PyVx with Pj:=exp((Qx;, Kx;))/ > exp((Qxi, Kxp))

j=1 (=1
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Measuring regularity with the local Lipschitz constant

f: (RY)" — (RY)" self-attention

Local Lipschitz constant

Norm on (R¥)": || X||? = Z?:1|Xi|2
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Measuring regularity with the local Lipschitz constant

f: (RY)" — (RY)" self-attention

Local Lipschitz constant .
® Gives global guarantees:

Norm on (R9)":  [IX[2 := S0, [xiP
— 1F(X) = fF(V)l
Local Lipschitz constant of f at X: sup
xzvepy X =Y

= sup Lipx(f)
XeBg

Lipx (f) = [[Dxfll2 = llshlplllef(E)H
Ell=

where Dxf: (RY)" — (R9)" Jacobian of f
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Measuring regularity with the local Lipschitz constant

f: (RY)" — (RY)" self-attention

Local Lipschitz constant
Norm on (RY)":  |IX[]2 =30, |xi[?

Local Lipschitz constant of f at X:

Lipx (f) = [[Dxfll2 = ”S‘Lllplllef(E)H
gll=
where Dxf: (RY)" — (R9)" Jacobian of f

X " x3

X

® Gives global guarantees:

1F(X) = fF(Y)]
X =Yl

sup

= sup Lipx(f)
X#YEBR

XeBg

® Direction of maximal change:
U= (u,...,up) first singular
vector of Dxf

IF(X +nU) = F(X)]|
1U]]

—rn—0 Lipx(f)
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Presentation of the problem

e Self-attention is not globally Lipschitz continuous [Kim et al., 2021]

Lip(figp) > (A, V)R?

— set one particle at zero + spread the others
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Presentation of the problem

e Self-attention is not globally Lipschitz continuous [Kim et al., 2021]

Lip(figp) > (A, V)R?

— set one particle at zero + spread the others
® Bound independent of n [Geshkovski et al., 2024]

Lip(figg) < IV, (1 + 3[|All, R?)e?I AR

e Big discrepancy! Which bound is tighter? Dependency on n?
® Characterize adversarial configurations?

® | ocal Lipschitz constant of real data?
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| - Dependency on n of the Lipschitz constant of self-attention

8/26



Theoretical dependency on the sequence length n

Theorem 1 [Castin et al., 2024]
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Theoretical dependency on the sequence length n

Theorem 1 [Castin et al., 2024]

[y
~

2
Lip(figz) < V3|V (HA”g R4(4n+1) + n) ~ R%/n

and if V = Iy,

1
>
~ 1+ (n—1)e2R*

Lip(fgn) vin—1

where R?~ & 10273 in practical Transformers.
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Theoretical dependency on the sequence length n

Theorem 1 [Castin et al., 2024]

—_
N

g /
Lip(fieg) < V[V, (A3 R*(4n +1) +n) " =~ RV
and if V = Iy,

1
Lip(fign) > vn—1
1P( |BR) 14+ (n _ 1)e—2R2’Y

where R%y ~ 10?73 in practical Transformers.

® R fixed by layer normalization
® n not too large: Lip(ﬁBE) grows like Cy/n

® n exponentially large: analyzed separately (mean-field regime)
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Theoretical dependency on the sequence length n

Theorem 1 [Castin et al., 2024]

|

. /2
Lip(fieg) < V3 (VI (IAIZ R(4n+1) +n) " ~ RV
and if V = I,

1
Lip(figy) > Vn—1

~ 14 (n—1)e 2R
where R?~ & 10273 in practical Transformers.

e Configuration for lower bound: (Ru,—Ru,...,—Ru) or (Ru,Ru/2,..., Ru/2) with u
eigenvector of A

® Similar bound for multi-head
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Experiments: typical case and worst case

LayerNorm

Multihead
Self-Attention
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Input (7,

Embedding
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Plot dependency of Lipy(f) in number of tokens n:

e for X obtained from real text (Alice in Wonderland,
AG_NEWS)
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LayerNorm

Plot dependency of Lipy(f) in number of tokens n:

e for X obtained from real text (Alice in Wonderland,
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Multihead
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® for adversarial data of the lower bound
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Experiments: typical case and worst case

LayerNorm

Plot dependency of Lipy(f) in number of tokens n:

e for X obtained from real text (Alice in Wonderland,

AG_NEWS)
Multihead
Self-Attention .
® for adversarial data of the lower bound
~——
s S ® ||Dxf|, computed with power method (d = 768)
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Experiments: typical case and worst case

LayerNorm

Multihead
Self-Attention

—— @
Positional N (X eees X))
encoding
[T S

Input (7,

Embedding

Inputs

Plot dependency of Lipy(f) in number of tokens n:

e for X obtained from real text (Alice in Wonderland,
AG_NEWS)

® for adversarial data of the lower bound
® ||[Dxf||, computed with power method (d = 768)

® Same theory for masked self-attention
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Experiments: typical case and worst case

Real data

Adversarial data

Lipschitz Constant

Lipschitz Constant

BERT Encoder BERT Decoder GPT-2 Random
Jub L
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T T T T T T T T T
0 50 100 0 50 100 0 50 100
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20 A Ry
cnlr2 20 1, cni2 254 cnlr?
T T T T T T T
0 50 100 0 50 100 0 50 100
Sequence Length Sequence Length Sequence Length

Local Lipschitz constant of real vs. adversarial data

e Growth in Cn'/4 for
real data
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Experiments: typical case and worst case

BERT Encoder

BERT Decoder

GPT-2 Random

Real data
Lipschitz Constant
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— cn 1/4

o 4
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g 40 1

=20
S Cn'?

Adversarial data
Lipschitz Constant

40

2042/

Cn 12

751
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254

cn 12

T T
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Sequence Length

0 50
Sequence Length

100

o A

50 100
Sequence Length

Local Lipschitz constant of real vs. adversarial data

e Growth in Cn'/4 for
real data

e Growth in C+/n for
adv. data — matches
lower bound

Obstacle to Lipschitz
attention (GPT-4o context
window: 128k)
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The special case of learnt positional encoding

o 127 mln-movvuumm'-'l'""
gc 104 .' GPT-2 pretrained: magnitude of tokens R grows
E i with number of tokens n
Z 84 2
2°f ! Lip(fig ) R*V/n
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Sequence length
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The special case of learnt positional encoding

Average magnitude

!0|ln-movmnlm'""‘"""

50 75 100
Sequence length

GPT-2 pretrained: magnitude of tokens R grows
with number of tokens n

Lip(figp) < R*v/n
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Gaining intuition with the large radius regime

Large radius regime
R — +o00 while n fixed

Denote m; = argmax; <;<,(Ax;, ;) (a.s. unique)

(Drxf)(€) —Rs100 (VeEmys -+ Vem,) e e (RY)"

Proposition [Castin et al., 2024]

In the large radius regime:

Lip(figg) SR-+00 VI VR

reached if my =---=m,
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Adversarial configurations in the large radius regime

One token x; far away from the others s.t.

Vi=1,...,n, (Ax,xj) = mfx(Ax,-,xk>

— local Lipschitz constant proportional to \/n

Input displacement

Output displacement

.
o o0
%

!

¢
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Il - The mean-field regime (n exponentially large)
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Generalizing self-attention to probability measures

Self-attention f(X) = (Fx(x1),...,x(xn)) with

Mx: XERd'—)ij\/XJ with  p; = exp((Ax, x;))/ Zexp Ax, xg))
j=1
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Generalizing self-attention to probability measures

Self-attention f(X) = (Fx(x1),...,x(xn)) with

Mx: XERdl—)ij\/XJ with  p; = exp((Ax, x;))/ Zexp Ax, xg))
j=1

Permutation equivariant: x; <+ xj = f(X); < f(X);

Mean-field self-attention [Sander et al., 2022]
F:p€ PR ()50 with

M,:x€R? /k(x,y) Vydu(y) with  k(x,y) = e<AX’y>//e<AX’z>d,u(z)

. . 1 n
Covers discrete case representing X as >/ ; dy,
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Generalizing self-attention to probability measures

Mean-field self-attention [Sander et al., 2022]
F:p € Pe(RY) — (T,)zu with

M, x€R? /k(x,y) Vydu(y) with k(x,y) = e<AX’y>//e<AX’Z>d,u(z)

Lipschitz constant measured with Wasserstein distance

~ ~
i) = (inf [ Rarten) RGN

not optimal optimal

where [dm(x, ) = du(x) and [dn(-,y) = dv(y)
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Generalizing self-attention to probability measures

Mean-field self-attention [Sander et al., 2022]
F:p € Pe(RY) — (T,)zu with

M, x€R? /k(x,y) Vydu(y) with k(x,y) = e<AX’y>//e<AX’Z>d,u(z)

Lipschitz constant measured with Wasserstein distance

1/2 2 R2
W — [inf _vI2d — upp. bound R<e
2(1,v) ('?r /|X i1 7T(X’y)> [Geshkovski et al., 2024]

where [dm(x, ) = du(x) and [dn(-,y) = dv(y)

: Wa(F(p), F(v))
Lip(F = sup
(Fipen) ptver(Br)  Walp,v)
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Lower bound in the mean-field regime

Upper bound [Geshkovski et al., 2024]

Lip(figg) < IV, (1 + 3| All, R?)e?I412R*
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Upper bound [Geshkovski et al., 2024]

Lip(figg) < IV, (1 + 3| All, R?)e?IA12R*

Proposition 2 [Castin et al., 2024]

If V=1;and n~ 2R

: 7 p2 AR?
Lip(figg) 2 5 R°e’

1 —pg
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Ru/2 Ru

v
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Lower bound in the mean-field regime

Upper bound [Geshkovski et al., 2024]

Lip(figg) < IV, (1 + 3| All, R?)e?IA12R*

Proposition 2 [Castin et al., 2024]

If V = Iy and n ~ 2R

: 7 p2 R?
Lip(fig) 2 5 R"e
Probability measures for lower bound:

PRORy + (1 — PR)ORy/2  OF  PRORY + (1 — PR)I-Ru

with
—2yR?
PrR =€ 7 7 R—+00 0

1 —pg
R Pr X
Ru/2 Ru
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The mean-field regime is not practically relevant

Proposition 2 [Castin et al., 2024]

If V=1yand n~ 2R

. 7 p2 _~R?
Lip(figg) 2 5 Re’

In practice 27R2? ~ 10% — not realistic

Head 0
Head 5
Head 10

Layer 19/26



[l - Masked self-attention
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Masked self-attention processes tokens sequentially

Masked self-attention f™: (R9)" — (R?)" such that
fm(X),' = f(Xl, . ,X,'),'

with params A, VV € R9xd

Theorem 2 [Castin et al., 2024]
The upper and lower bounds of Theorem 1 on Lip(ﬁB,g) also hold for Lip(ﬁ'gg)

Mean-field regime? — not permutation equivariant!
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Generalizing masked self-attention to measures

Mean-field self-attention F: p € Pc(RY) — (I,)sp where

ML x e RY / k(x,y)Vydu(y) with k(x,y) = e<AX’y>//e<AX’Z>d,u(z)
Rd
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Generalizing masked self-attention to measures

Mean-field self-attention F: p € Pc(RY) — (I,)sp where

M. x€Ry / k(x,y)Vydu(y) with k(x,y) = e<AX’y>//e<AX’z>d,u(z)
Rd

Mean-field masked self-attention [Castin et al., 2024]

Replace 11 € P(RY) by i € Pc([0,1] x RY):

R U@ slee i) = (S, / Vyks(x,y)dﬁ(r,y)>
[0,1] xRd
with
ke(x,y) = e oo/ N1, < dfi(r, y)

[0,1]xRd
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Generalizing masked self-attention to measures

Mean-field self-attention F: p € Pc(RY) — (I,)sp where

M. x€Ry / k(x,y)Vydu(y) with k(x,y) = e<AX’y>//e<AX’z>d,u(z)
Rd

Mean-field masked self-attention [Castin et al., 2024]

Replace 11 € P(RY) by i € Pc([0,1] x RY):

Fmi l_// = (rﬁ)ﬁﬂ where rp,(S,X) = (57/ VykS(X7y)d/]’(T7y)>
[0,1]xR4

with
ks(x,y) = eI 1 ./ N1 di(r, y)
~ J[o,1]xRd -

Same upper bound as unmasked mean-field self-attention!
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IV - Application of the mean-field framework:
modeling Transformers as PDEs
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Modeling an infinitely deep Transformer as a PDE

e Simplified Transformer with only attention layers:

1
f=flomof with F(X)=X+Z(Mk(x)... Tk(xn))
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with p(t) =250, Ox(¢) and Tpy(p: RY — R velocity field
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Modeling an infinitely deep Transformer as a PDE

e Simplified Transformer with only attention layers:

1
f=flomof with F(X)=X+Z(Mk(x)... Tk(xn))

® Discretizes
xi(t) =Ty (xi(t)), 1<i<n

with p(t) =250, Ox(¢) and Tpy(p: RY — R velocity field

~n

Corresponding PDE:
O + div(pl,) =0

also on continuous measures
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Tokens cluster after renormalization

For discrete tokens xi, ..., x, following

xi(t) = Tx () (xi(t))

and renormalizing
yvi(t) = e Vx(t)

— clusters emerge [Geshkovski et al., 2024]
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Tokens cluster after renormalization

For discrete tokens xi, ..., x, following e |5

X’(t) = rx(t)(X,'(t)) \:& : ys—s L -

and renormalizing

yi(t) = e_tVX,-(t) .

0

— clusters emerge [Geshkovski et al., 2024]
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Similar phenomenon for Gaussian inputs! (Castin, Carrillo, Peyré, Ablin, in preparation)
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