Mean-Field Transformer Dynamics:
Well-Posedness, Gaussian Clustering

Valérie Castin

Ecole Normale Supérieure PSL, Paris

RSME, Universidad de Alicante, 21 January 2026

1/20



[
£

José A. Carrillo Gabriel Peyré Pierre Ablin
University of Oxford ENS PSL Apple Paris

A Unified Perspective on the Dynamics of Deep Transformers, Castin, Ablin,
Carrillo, Peyré, preprint 2025

2/20



Outline

| - Discrete and mean-field model for Transformers
I - Well-posedness of the Transformer PDE for compactly supported initial data

[l - Clustering in the Gaussian case

3/20



| - Discrete and mean-field model for Transformers

4/20



The Transformer architecture

( ) Transformers process tuples:
LayerNorm

_>= e Traditional neural network: x € R%n 3 x/ € R%ut

Lx |

Multihead
Self-Attention

tt4

19—
encoding

(my, ..., m,)

Positional ? (s s X))

Input
Embedding

R

(1}, ...,7,)

Inputs

5/20



The Transformer architecture

( ) Transformers process tuples:
LayerNorm

_>= e Traditional neural network: x € R%n 3 x/ € R%ut
® Transformer:

Lx | (Xl,...,Xn)E(Rgl)n'—)(xi,...,x;)E(Rgut)n

Multihead
Self-Attention

tt4

Positional (s s X))

encoding ?
(my, ..., m,)

Input
Embedding

R

(1}, ...,7,)

Inputs

5/20



The Transformer architecture

( ) Transformers process tuples:
LayerNorm

_>= e Traditional neural network: x € R%n 3 x/ € R%ut
® Transformer:

Lx | (Xl,...,Xn)E(Rgl)n'—)(xi,...,x;)E(Rgut)n

Tokens X = (x1,...,Xp) are obtained through tokenization:
Multihead
Self-Attention

tt4

Positional (s s X))

encoding ?
(my, ..., m,)

Input
Embedding

R

(1}, ...,7,)

Inputs

5/20



The Transformer architecture

( (o) ) Transformers process tuples:

_>= e Traditional neural network: x € R%n 3 x/ € R%ut
® Transformer:

Lx | (Xl,...,Xn)E(Rgl)n'—)(xi,...,x;)E(Rgut)n

Tokens X = (x1,...,Xp) are obtained through tokenization:
Multihead
Self-Attention ® NLP: tokens = words or subwords

tt4

| — R This is how GPT-3 tokenizes this sentence.

s Xps ees X,
Posmo_nal > ? (o W)
encoding

(my, ..., m,)

Input
Embedding

R

(1}, ...,7,)

Inputs

5/20



The Transformer architecture

( ) Transformers process tuples:

_>= e Traditional neural network: x € R%n — x’ € Rut
® Transformer:
! d\n / / d \n
L X (Xl,...,Xn)G(]Rin) '_>(X17"'7Xn)€(Rout)
Tokens X = (x1,...,Xp) are obtained through tokenization:
Multihead
Self-Attention ® NLP: tokens = words or subwords
tt+14 . . .
| — R This is how GPT-3 tokenizes this sentence.
- (X)) oeer X,p)
Positional »q 1 n
(enmdi"g) 1 ® Vision: tokens = image patches
Ty oo T,
I t
Em;z&mg (F1s e ) 8 | ;‘ |
(Fokenization) 1.5, Ilii o 'l!l

1:} “

Inputs

5/20



The Transformer architecture

—d
©

MLP

LayerNorm
72
D

Multihead
Self-Attention

Positio_nal > ?
encoding

(my, ..., m,)

Input

Embedding

Inputs

tt4

——1

(X1, .., X,)

® One input — n tokens X = (xi,..

1 Xn) € (RY)"

6/20



The Transformer architecture

r—————J—————\

e One input — n tokens X := (xq,...,x,) € (RY)"
: ® Self-attention with params A, V:
(we )
Lx | f(Xl,...,Xn) = (rx(Xl),...,rx(Xn)) where
&P n n
Self-Attention Mx(x) =3 i)V with pj(xi) = e/ 3 i)
11 j=1 (=1
—— @
Fostersl —sgp (1
(my, ..., m,)

Embedding | (77 ™

R

Inputs

6/20



The Transformer architecture

(—Iﬁ
e One input — n tokens X := (xq,...,x,) € (RY)"
: ® Self-attention with params A, V:
(we )
Sl R g— f(x1,-..,xn) = (Mx(x1),...,Fx(xn)) where
D n
Self Attention Mx(x) =3 i)V with pj(xi) = e/ 3 i)
57 j=1 =1
——
ositional (CIRRRE N .
ancoting ——% e Multilayer perceptron g: RY — RY, x =+ Wa(Ux + b)
(my, ..., m,)

) e (applied token-wise)
Embedding

R

Inputs

6/20



The Transformer architecture

r—————J—————\

e One input — n tokens X := (xq,...,x,) € (RY)"
: ® Self-attention with params A, V:
(we )
Lx | f(Xl,...,Xn) = (rx(Xl),...,rx(Xn)) where
D n n
o thend Fx(6) =Y pilxi) Vg with  pj(x;) == 790/ = el
ttt Jj=1 (=1
——
ositional (IR .
odtons ——gp e Multilayer perceptron g: RY — RY, x =+ Wa(Ux + b)
(my, ..., m,) . o
it ) ) (applied token-wise)
[

Layer normalization LN: x — S ® ﬁ\/a (applied
e token-wise)

Inputs

6/20



Studying the dynamics of tokens across layers

3 Without MLP and LN:

‘ X,'(f‘i‘l) :X,'(t)—f—rxt(x,'(t)) 1
=

IN
IN
3

Multihead
Self-Attention

tt4

| —

Positional d (s s X))
encoding ?

(my, ..., m,)

Embedding

Inputs

7/20



Studying the dynamics of tokens across layers

3 Without MLP and LN:

‘ xi(t+ 1) = x;(t) + Mx,(xi(t)) 1
L

IN
IN
3

Multihead

Sel-Attention What are the dynamics of tokens going through the
ttt Transformer? The geometry of learned representations?
——
ositional > ()
:nc;dingI ?
(my, ..., m,)

Embedding

Inputs

7/20



Studying the dynamics of tokens across layers

3 Without MLP and LN:

‘ xi(t+ 1) = x;(t) + Mx,(xi(t)) 1
L

IN
IN
3

Multihead

Sel-Attention What are the dynamics of tokens going through the
ttt Transformer? The geometry of learned representations?
——
Positional > Gy eees Xy) .
reodng 1 ® understand clustering effect
Ty oo T,

Embedding

Inputs

7/20



Studying the dynamics of tokens across layers

3 Without MLP and LN:

‘ xi(t+ 1) = x;(t) + Mx,(xi(t)) 1
L

IN
IN
3

Multihead

Sel-Attention What are the dynamics of tokens going through the
ttt Transformer? The geometry of learned representations?
——
Positional > Gy eees Xy) .
reodng 1 ® understand clustering effect
Ty oo T,

Embedding | -+% @ impact of parameters Ay, , V)

R

Inputs

7/20



Studying the dynamics of tokens across layers

3 Without MLP and LN:

‘ X,'(f‘i‘l) :X,'(t)—f—rxt(x,'(t)) 1
=

IN
IN
3

Multihead

Sel-Attention What are the dynamics of tokens going through the
ttt Transformer? The geometry of learned representations?
——
Positional > Gy eees Xy) .
reodng 1 ® understand clustering effect
Ty oo T,

Embedding | -+% @ impact of parameters Ay, , V)

sy ® iMpact of the initial support and the sequence length

Inputs

7/20



Modeling the Transformer dynamics

Infinite-depth limit [Sander et al., 2022, Geshkovski et al., 2023]

xi(t) = Fx () (xi(t)) 1<i<n (similar to Neural ODEs)

-> well-posed
-> clustering of tokens when t — +o00
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Mean-field attention map (" infinite sequence length”):

Fu() = / k(x,y)Vydu(y) with k(x,y) = e/ / e dy(y')

Transformer PDE: Oep + div(pl,) =0

- well-posed for compactly supported 1o

- behavior for measures with density?
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Il - Well-posedness and stability estimates of the Transformer PDE
for compactly supported initial data

Oppt + div(pl,) =0
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The Transformer PDE in the compactly supported case

o compactly supported, Oy + div(ul,) =0 (1)
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The Transformer PDE in the compactly supported case

Mu(z) = / k(z,y)Vydu(y) with k(z,y) ==/ / e du(y’)

Central estimates for proof

L. supyerd|Mu(x)[ < [VII2 R,
2. supyepe[| DxTpu(x)l2 < V]I 1Al R,
3. |Tu(x) = Tu(x)| < c(x, RYW, (11, v) with c(x, R) exp in R?
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Mu(z) = / k(z,y)Vydu(y) with k(z,y) = e/ / e du(y’)

Central estimates for proof

L. supyerd|Mu(x)[ < [VII2 R,
2. supyepe[| DxTpu(x)l2 < V]I 1Al R,
3. |Tu(x) = Tu(x)| < c(x, RYW, (11, v) with c(x, R) exp in R?

¢ Refine estimate 3 if ;1 empirical measure with n diracs [Castin et al., 2024]:
c(x, R) < [|A]l, R?

e LayerNorm prevents exp growth of R(t)

® Modular framework — extends to attention variants!
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v/ Masked attention
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[I1 - Clustering in the Gaussian case

Oppt + div(pl,) =0
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The Transformer PDE in the Gaussian case
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Proposition: evolution of Gaussian initial data [Castin et al., 2025]

Consider
O + div(pl,) =0 (1)

Assume A, V continuous and 1o = N (g, Xo). Then (1) has a unique maximal solution
on [0, tmax), Gaussian for all t. Denoting u(t) = N(a(t), X(t)):

a=V(ly+ LA
Y =VIAY +TATTVT
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Clustering emerges in the Gaussian case

Proposition: closed-form analysis

Consider

Y=VIAT +TATTVT.
Assume
e A,V constant
e V commutes with VA+ ATV T and ¥

Then
Y(t) = (T —t(VA+ATVT)) !

15/20



Clustering emerges in the Gaussian case

Proposition: closed-form analysis

Consider

Y =VIAT+TATZVT.

Assume
e A,V constant
e V commutes with VA+ ATV T and ¥
Then
()= (Tt - t(VA+ ATVT)) ™
e If VA+ ATVT <0 the solution is global and converges to ¥* such that
MVA+ATVTY<0=X(X*)=0  "clustering”

15/20



Clustering emerges in the Gaussian case

Proposition: closed-form analysis

Consider

Y =VIAZ+TA'ZVT.

Assume

e A,V constant

e V commutes with VA+ ATV T and ¥
Then

Y(t) = (gt —t(VA+ATVT)) !
o If VA+ ATVT <0 the solution is global and converges to ¥* such that
MVA+ATVTY<0=X(X*)=0  "clustering”

e Otherwise A\1(X(t)) — 400 in finite time
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Clustering emerges in the Gaussian case

Plot the covariance evolution for d = 2:

(a) Conv. to  (b) Conv. to  (c) Conv. to  (d) Conv. to

zero a line a plane two lines
a+b

2¢

(2 5) s mrn=-b2ca+s)
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Comparing attention variants

® Softmax, L2, Sinkhorn attention — similar behavior when converge

® | 2 does not blow-up in finite time — more regular
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® | 2 does not blow-up in finite time — more regular

Y — Y/Trx (a) Blow-up (b) Blow-up  (c) Div. ~ (d) Conv./blow-up
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Conclusion

® Mean-field attention and the Transformer PDE generalize dynamics to infinitely
many tokens

e Compactly supported data: well-posed PDE, very sensitive to initial condition

e Gaussian data: clustering, possible finite-time blow-up — LayerNorm changes a lot
the dynamics

® Beyond Gaussian case?
® What about next-token prediction? (Masked attention dynamics)

® From discrete to continuous time, what changes?
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Thank you!
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