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The Transformer architecture

Tokenization

Multihead 
Self-Attention

LayerNorm

MLP      

Input 
Embedding (τ1, …, τn)

(s1, …, sn)

Inputs 

L ×

LayerNorm

Positional 
encoding 

(π1, …, πn)

(x1, …, xn)

Transformers process tuples:

• Traditional neural network: x ∈ Rdin 7→ x ′ ∈ Rdout

• Transformer:
(x1, . . . , xn) ∈ (Rd

in)n 7→ (x ′1, . . . , x
′
n) ∈ (Rd

out)
n

Tokens X = (x1, . . . , xn) are obtained through tokenization:

• NLP: tokens = words or subwords

This is how GPT-3 tokenizes this sentence. 

• Vision: tokens = image patches
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• One input → n tokens X := (x1, . . . , xn) ∈ (Rd)n

• Self-attention with params A,V :

f (x1, . . . , xn) := (ΓX (x1), . . . , ΓX (xn)) where

ΓX (xi ) :=
n∑

j=1

pj(xi )Vxj with pj(xi ) := e〈Axi ,xj 〉/
n∑
`=1

e〈Axi ,x`〉

• Multilayer perceptron g : Rd → Rd , x 7→Wσ(Ux + b)
(applied token-wise)

• Layer normalization LN : x 7→ β � x
|x |
√
d (applied

token-wise)
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Studying the dynamics of tokens across layers

Tokenization

Multihead 
Self-Attention

LayerNorm

MLP      

Input 
Embedding (τ1, …, τn)

(s1, …, sn)

Inputs 

L ×

LayerNorm

Positional 
encoding 

(π1, …, πn)

(x1, …, xn)

Without MLP and LN:

xi (t + 1) = xi (t) + ΓXt (xi (t)) 1 ≤ i ≤ n

What are the dynamics of tokens going through the
Transformer? The geometry of learned representations?

• understand clustering effect

• impact of parameters A`, ,V`
• impact of the initial support and the sequence length
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Modeling the Transformer dynamics

Infinite-depth limit [Sander et al., 2022, Geshkovski et al., 2023]

ẋi (t) = ΓX (t)(xi (t)) 1 ≤ i ≤ n (similar to Neural ODEs)

Ô well-posed

Ô clustering of tokens when t → +∞

Infinite-depth & infinite-length limit [Sander et al., 2022, Geshkovski et al., 2023, Castin et al., 2025]

Mean-field attention map (”infinite sequence length”):

Γµ(x) =

∫
k(x , y)Vy dµ(y) with k(x , y) = e〈Ax ,y〉/

∫
e〈Ax ,y

′〉dµ(y ′)

Transformer PDE: ∂tµ+ div(µΓµ) = 0

Ô well-posed for compactly supported µ0

Ô behavior for measures with density?
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II - Well-posedness and stability estimates of the Transformer PDE
for compactly supported initial data

∂tµ + div(µΓµ) = 0
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The Transformer PDE in the compactly supported case

µ0 compactly supported, ∂tµ+ div(µΓµ) = 0 (1)

Well-posedness [Geshkovski et al., 2024, Castin et al., 2025]

• Assume A(t),V (t) continuous

• Assume suppµ0 ⊂ B(0,R0)

Then (1) has a unique global weak solution µ, such that

suppµ(t) ⊂ B(0, e
∫ t

0 ‖V (s)‖2dsR0).

If supp ν0 ⊂ B(0,R0) then

Wp(µ(t), ν(t)) ≤ C (t,R0)Wp(µ0, ν0) ∀p ≥ 1

with C (t,R0) ∝ etR(t)2
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The Transformer PDE in the compactly supported case

Γµ(z) =

∫
k(z , y)Vydµ(y) with k(z , y) := e〈Az,y〉/

∫
e〈Az,y

′〉dµ(y ′)

Central estimates for proof

1. supx∈Rd |Γµ(x)| ≤ ‖V ‖2 R,

2. supx∈Rd‖DxΓµ(x)‖2 ≤ ‖V ‖2 ‖A‖2 R
2,

3. |Γµ(x)− Γν(x)| ≤ c(x ,R)Wp(µ, ν) with c(x ,R) exp in R2

• Refine estimate 3 if µ empirical measure with n diracs [Castin et al., 2024]:

c(x ,R) ≤ ‖A‖2 R
2

• LayerNorm prevents exp growth of R(t)
• Modular framework → extends to attention variants!
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Extending to attention variants

Attention map: Γµ(z) =
∫
k(z , y)Vydµ(y)

3 Softmax attention: k(z , y) = e〈Az,y〉/
∫
e〈Az,y

′〉dµ(y ′)

3 L2 attention: k(z , y) = e−|Qz−Ky |2/
∫
e−|Qz−Ky ′|2dµ(y ′)

3 Sinkhorn attention: k(z , y) is the limit j → +∞ of

κ0(z , y) = e〈Az,y〉, κj+1(z , y) =


κj (z,y)∫

κj (z,y ′)dµ(y ′)
if j is even,

κj (z,y)∫
κj (z ′,y)dµ(z ′)

if j is odd

3 Masked attention

12 / 20
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III - Clustering in the Gaussian case

∂tµ + div(µΓµ) = 0
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The Transformer PDE in the Gaussian case

Lemma: attention map on Gaussians

If µ = N (α,Σ) then
Γµ(x) = V (α + ΣAx)

Similar for L2 and Sinkhorn attention!

Proposition: evolution of Gaussian initial data [Castin et al., 2025]

Consider
∂tµ+ div(µΓµ) = 0 (1)

Assume A,V continuous and µ0 = N (α0,Σ0). Then (1) has a unique maximal solution
on [0, tmax), Gaussian for all t. Denoting µ(t) = N (α(t),Σ(t)):{

α̇ = V (Id + ΣA)α

Σ̇ = VΣAΣ + ΣA>ΣV>

14 / 20
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Clustering emerges in the Gaussian case

Proposition: closed-form analysis

Consider
Σ̇ = VΣAΣ + ΣA>ΣV>.

Assume

• A,V constant

• V commutes with VA + A>V> and Σ0

Then
Σ(t) = (Σ−1

0 − t(VA + A>V>))−1

• If VA + A>V> � 0 the solution is global and converges to Σ∗ such that

λi (VA + A>V>) < 0⇒ λi (Σ∗) = 0 ”clustering”

• Otherwise λ1(Σ(t))→ +∞ in finite time
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Clustering emerges in the Gaussian case

Plot the covariance evolution for d = 2:

(a) Conv. to (b) Conv. to (c) Conv. to (d) Conv. to
zero a line a plane two lines

a + b

a − b

2c

(
a c
c b

)
∈ S+

2 7→ (x , y , z) := (a− b, 2c, a + b)
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Comparing attention variants

• Softmax, L2, Sinkhorn attention → similar behavior when converge

• L2 does not blow-up in finite time → more regular

Σ 7→ Σ/TrΣ (a) Blow-up (b) Blow-up (c) Div. (d) Conv./blow-up

SM att. MH att. L2 att. SM att.
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Conclusion

• Mean-field attention and the Transformer PDE generalize dynamics to infinitely
many tokens

• Compactly supported data: well-posed PDE, very sensitive to initial condition

• Gaussian data: clustering, possible finite-time blow-up → LayerNorm changes a lot
the dynamics

• Beyond Gaussian case?

• What about next-token prediction? (Masked attention dynamics)

• From discrete to continuous time, what changes?
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Thank you!
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