The Transformer Architecture

Variants of self-attention

Transformers represent each data point by a sequence of tokens (x1,...,x,) € (Rd)” of varying
length.

This is how GPT-3 tokenizes this sentence.

Figure 1. Tokenization of text (GPT2 tokenizer)

Figure 2. Tokenization of images

Self-attention grasps dependencies between tokens (e.g. semantic dependencies) and is coupled
with 2-layer multi-layer perceptron and layer normalization. All layers are residual.
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Figure 3. The original Transformer architecture, by Vaswani et al. [4]

Tokens can be seen as interacting particles in the Encoder.

Setup - Viewing a Transformer as a PDE

Self-attention has three parameters Q, K,V € R%*% Denote A = K ' Q.
= Traditional self-attention by Vaswani et al. [4]
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= |2 self-attention by Kim et al. [2]
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= Sinkformer self-attention by Sander et al. [3]
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where k°° is obtained2 by performing the Sinkhorn-Knopp algorithm on
K(z,y) = e 1QT=KYI je k%(z,y) is the limit of the following sequence:
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Contribution 1 - Well-posedness for compactly supported initial data
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Contribution 2 = Behavior for a Gaussian initial condition

When ug ~ N(a, X)), the solution u(t) of
Oppt 4 div(pl’y) = 0

stays Gaussian over time for all considered types of self-attention. We derive an ODE on the
covariance matrix X of u(t).

= Traditional self-attention .
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Two cases: finite-time blow-up or convergence to a low-rank matrix — clustering effect.
= |2 self-attention
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We always have global existence. Two cases: divergence of at least one eigenvalue or
convergence to a low-rank matrix — clustering effect.

= Sinkformer self-attention
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Contribution 3 - Handling masked self-attention

Equip Pp(Rd) with the p-Wasserstein distance Wy, If @, K,V : |0, +o0) — RI*d 3re continuous
and the initial data ug is compactly supported, then for all considered types of self-attention,
the evolution

Oppt + div(pl’y) =0

has a unique global weak solution p € C([0, +00), Pp(R%)). Moreover, the radius R(t) of the
support of u(t) satishes

R(t) < JollV(s)llads

and we have a stability estimate
Wp(u(t), v(t)) < C(T, Ro)Wp(po, )-

State of the art — Behavior for n tokens

We consider a simplified Transformer with only residual self-attention blocks:
f=(G{d+ Yo 06d+ Y (1)
with
FO X = (21, zn) = T (1), . .., D (20))
for some function Fé( . RY — RY. Equation (1) can then be seen as the discretization of
t; =1'(t, X(t)); 1 <i<n.

The mean-field limit of this system of equations is then of the form

Geshkovski et al. [1] show the emergence of clusters when pg is an empirical measure, after the

tV

rescaling z; = e~ " a;.
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Masked self-attention is defined as

(X)) = fxn, - 2);
with f traditional self-attention. How to extend it to probability measures?
Mean-field masked self-attention:

For i € P.([0,1] x R%), denote u(A) = fslzo fxeA dii(s, x). We define mean-field masked self-
attention on P.([0, 1] x R%) as

F™: o— (Fu)ﬁﬂ where

A:U-yl

f[O,l] < R4 Vye TSSd:L_L(Ta y)

f[O,l] (R €Y <sd (T, y)

FQ(S, QZ) = 0,
Then the evolution
Ot + diV(ﬁFﬂ) =0

with compactly supported initial data is well-posed.
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Fiegure 4. Clustering dynamics evidentiated by Geshkovski et al. [1] after the rescaling z; .= e ", for

O + div(pl’y,) = 0.
Q=K=V=1I,
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